Grape Pomace in Ewes Diet Affects Metagenomic Profile, Volatile Compounds and Biogenic Amines Contents of Ripened Cheese

Author:

Bennato FrancescaORCID,Di Domenico MarcoORCID,Ianni AndreaORCID,Di Gialleonardo Luigina,Cammà CesareORCID,Martino GiuseppeORCID

Abstract

The main objective of this research was to evaluate the development of volatile organic compounds (VOCs) and the accumulation of biogenic amines (BAs) in relation to the dynamic of microbial population composition in fresh and ripened cheese produced from raw milk of ewes fed a diet containing grape pomace (GP+) and fed a standard diet (Ctrl). Genomic DNA was extracted from the cheeses at 2 (T2), 60 (T60), 90 (T90) and 120 (T120) days of ripening and prepared for 16S rRNA-gene sequencing to characterize the cheese microbiota; furthermore, VOCs were determined via solid-phase microextraction combined with gas chromatography-mass spectrometry and biogenic amines by HPLC analyses. Diet did not affect the relative abundance of the main phyla identified, Proteobacteria characterized T2 samples, but the scenario changed during the ripening. At genus level, Pseudomonas, Chryseobacterium and Acinetobacter were the dominant taxa, however, a lower percentage of Pseudomonas was detected in GP+ cheeses. Enterococcus became dominant in ripened cheeses followed in Ctrl cheeses by Lactobacillus and in GP+ cheeses by Lactococcus. The diet affected the development of carboxylic acids and ketones but not of aldehydes. Low levels of esters were identified in all the samples. In total, four biogenic amines were determined in cheeses samples and their levels differed between the two groups and during ripening time. In 60, T90 and T120 GP+ cheeses, a lower amount of 2-phenylethylamine was found compared to Ctrl. Putrescine was detected only in GP+ samples and reached the highest level at 120 days. Conversely, the amount of cadaverine in GP+ samples was invariable during the ripening. The concentration of tyramine in GP+ samples was compared to Ctrl during the ripening. Overall, significant positive correlations between some families of bacteria and the formation of VOCs and BAs were found.

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3