Bioconversion of Some Agro-Residues into Organic Acids by Cellulolytic Rock-Phosphate-Solubilizing Aspergillus japonicus

Author:

Mahgoub Samir A.ORCID,Kedra Elmadawy G. A.,Abdelfattah Hassan I.,Abdelbasit Howaida M.,Alamoudi Soha A.,Al-Quwaie Diana A.,Selim Samy,Alsharari Salam S.,Saber Wesam I. A.,El-Mekkawy Rasha M.

Abstract

Biological-based conversion of agricultural residues into bioactive compounds may be considered to be the basis for various vital industries. However, finding a suitable microorganism is a challenge in the bioconversion process. Therefore, this study was conducted to find local fungal isolates able to convert a combination of plant biomass residues into organic acids (OAs). Based on their cellulase and phytase activities and rock phosphate (RP) solubilization potential, an efficient 15 fungal isolates (named F1 to F15) were selected and identified by both morphological and molecular methods using the 18S rRNA sequencing technique. The best fungal isolate (F15) was identified as Aspergillus japonicus. After 4 weeks of incubation below solid-state fermentation (SSF) with a mix of sugarcane bagasse and faba bean straw (3:7), with 7.5% (v/w) fungal inoculum to the growth medium, the biodegradation process by the fungus reached its peak, i.e., maximum cellulolytic activity and RP solubilization ability. Under such fermentation conditions, seven organic acids were detected using HPLC, in the following order: ascorbic acid > oxalic acid > formic acid > malic acid > succinic acid > lactic acid > citric acid. Based on the results, Aspergillus japonicus (F15) could produce OAs and cellulose enzymes, and could be considered a new single-step bio-converter of sugarcane bagasse and faba bean straw residues into OAs. Furthermore, this fungus could be a new source of fungal cellulose, and could present a practical approach to reducing environmental contamination. Additional work is encouraged for more optimization of fermentation conditions.

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3