Optimization of the Nutrient Medium for Flammulina velutipes Submerged Biomass Production and Micromorphology of Its Mycelium

Author:

Krasnopolskaya LarissaORCID,Shuktueva Maria,Golyshkin Aleksandr,Almyasheva NailyaORCID,Yarina Maria

Abstract

Based on the assessment of the trophic needs of basidiomycete Flammulina velutipes and the optimization of the composition of the nutrient medium using design of experimental approach, the yield of the submerged biomass of the fungus was increased to 41 g/L, the duration of the cultivation process was reduced to 5 days. For this purpose, the 24 full factorial design, the Box–Wilson steep ascent method and the construction of the response surface were used. Using the method of scanning electron microscopy, it was shown that the studied F. velutipes strain grew in the form of small spherical pellets with a diameter of 1–2 mm on an optimized medium. The surface of the pellets was loose; the inner part was filled with hyphae tightly adjacent to each other. The center of the pellets had no cavity. F. velutipes pellets were formed by septate hyphae with clamp connections. The micromorphological characteristics of the submerged F. velutipes mycelium ensured a high diffusion of nutrients and oxygen into the pellets and their maximum filling of the volume of the culture medium.

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3