Abstract
Early detection of beer faults is an important assessment in the brewing process to secure a high-quality product and consumer acceptability. This study proposed an integrated AI system for smart detection of beer faults based on the comparison of near-infrared spectroscopy (NIR) and a newly developed electronic nose (e-nose) using machine learning modelling. For these purposes, a commercial larger beer was used as a base prototype, which was spiked with 18 common beer faults plus the control aroma. The 19 aroma profiles were used as targets for classification ma-chine learning (ML) modelling. Six different ML models were developed; Model 1 (M1) and M2 were developed using the NIR absorbance values (100 inputs from 1596–2396 nm) and e-nose (nine sensor readings) as inputs, respectively, to classify the samples into control, low and high concentration of faults. Model 3 (M3) and M4 were based on NIR and M5 and M6 based on the e-nose readings as inputs with 19 aroma profiles as targets for all models. A customized code tested 17 artificial neural network (ANN) algorithms automatically testing performance and neu-ron trimming. Results showed that the Bayesian regularization algorithm was the most adequate for classification rendering precisions of M1 = 95.6%, M2 = 95.3%, M3 = 98.9%, M4 = 98.3%, M5 = 96.8%, and M6 = 96.2% without statistical signs of under- or overfitting. The proposed system can be added to robotic pourers and the brewing process at low cost, which can benefit craft and larger brewing companies.
Subject
Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science
Reference42 articles.
1. Sensory analysis as a tool for beer quality assessment with an emphasis on its use for microbial control in the brewery;Spedding,2015
2. Principles of Sensory Evaluation of Food;Amerine,2013
3. Quantitative Sensory Analysis: Psychophysics, Models and Intelligent Design;Lawless,2013
4. Wine-related aromas for different seasons and occasions: Hedonic and emotional responses of wine consumers from Australia, UK and USA
5. Off-flavours detection in alcoholic beverages by electronic nose coupled to GC
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献