Abstract
Biomass appears to be one of the most prominent renewable resources for biofuels such as bioethanol, mainly due to its better environmental performance compared with fossil fuels. This study addresses a comprehensive environmental performance of bioethanol production, employing empirical data from hybrid poplar grown in the U.S. The study considers 1 MJ as a functional unit and employs a cradle-to-grave approach, which entails the feedstock and harvesting production of poplar, transport to a biorefinery, bioconversion of the biomass process, and fuel use. On average, bioconversion is the main contributor to environmental degradation in all the categories evaluated (77%). The second main contributor is either the feedstock and harvesting production of poplar (17%) or fuel use (6%), depending on the environmental category. Thus, focusing on only one category may induce a misinterpretation of the environmental performance of bioethanol production. Finally, environmental credits in the global warming potential (GWP) category were obtained from the carbon sequestered in the biomass during the growing period and from avoided fossil fuel emissions due to electricity production from a renewable source. This means that the net GWP of the life cycle of bioethanol from poplar biomass is slightly negative (−1.05 × 10−3 kg CO2-eq·MJ−1).
Funder
Department of Energy’s Office of Energy Efficiency and Renewable Energy under the Bioenergy Technologies Office
CONICYT PFCHA/DOCTORADO BECAS CHILE
Subject
Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献