Fermentation in Minimal Media and Fungal Elicitation Enhance Violacein and Deoxyviolacein Production in Two Janthinobacterium Strains

Author:

Frediansyah AndriORCID,Manuhara Yosephine Sri WulanORCID,Kristanti Alfinda Novi,Luqman ArifORCID,Wibowo Anjar TriORCID

Abstract

Violacein and its biosynthesis by-product deoxyviolacein are valuable natural pigments with different biological activities. Various efforts have been made to enhance violacein and deoxyviolacein production in microbes. However, the effect of different culture media, agitation, and fungal elicitation on biosynthesis in Janthinobacterium has not been evaluated. In this study, the effect of eight different culture media, agitation, and fungal elicitation by Agaricus bisporus on violacein and deoxviolacein production in Janthinobacterium agaricidamnosum DSM 9628 and Janthinobacterium lividum DSM 1552 were examined. The results showed that violacein and deoxviolacein are produced at high-levels when Janthinobacterium is cultivated in minimal media such as Davis minimal broth with glycerol (DMBgly), shipworm basal medium (SBM), and MM9 media. A 50-fold increase was observed in violacein production when Janthinobacterium was cultivated in these media compared to cultivation in Luria–Bertani (LB), nutrient broth (NB), and King’s B (KB). Agitation reduces violacein and deoxyviolacein production, while fungal elicitation decreases violacein but increases deoxyviolacein when Janthinobacterium is cultured in KB media, SBM, and modified SBM (MSBM). An antibacterial assay using various pathogenic bacteria showed that violacein and deoxyviolacein extracted from Janthinobacterium are effective against both Gram-positive and Gram-negative pathogens, confirming their functionality as antibacterial agents. The findings suggest that cultivation in minimal media and fungal elicitation might invoke a stress response, enhancing the production of violacein and deoxviolacein in Janthinobacterium.

Funder

Airlangga University Hibah Riset Mandat Grant

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3