Sugarcane Bagasse-Based Ethanol Production and Utilization of Its Vinasse for Xylitol Production as an Approach in Integrated Biorefinery

Author:

Hor Sreyden,Kongkeitkajorn Mallika BoonmeeORCID,Reungsang AlissaraORCID

Abstract

Biorefinery of sugarcane bagasse into ethanol and xylitol was investigated in this study. Ethanol fermentation of sugarcane bagasse hydrolysate was carried out by Saccharomyces cerevisiae. After ethanol distillation, the vinasse containing xylose was used to produce xylitol through fermentation by Candida guilliermondii TISTR 5068. During the ethanol fermentation, it was not necessary to supplement a nitrogen source to the hydrolysate. Approximately 50 g/L of bioethanol was produced after 36 h of fermentation. The vinasse was successfully used to produce xylitol. Supplementing the vinasse with 1 g/L of yeast extract improved xylitol production 1.4-fold. Cultivating the yeast with 10% controlled dissolved oxygen resulted in the best xylitol production and yields of 10.2 ± 1.12 g/L and 0.74 ± 0.04 g/g after 60 h fermentation. Supplementing the vinasse with low fraction of molasses to improve xylitol production did not yield a positive result. The supplementation caused decreases of up to 34% in xylitol production rate, 24% in concentration, and 24% in yield.

Funder

Research Center for Environmental and Hazardous Substance Management, Khon Kaen University

Thailand Science Research and Innovation

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

Reference50 articles.

1. Lignocellulosic Biomass: Understanding Recalcitrance and Predicting Hydrolysis

2. Assessing the lignocellulosic biomass resources potential in developing countries: A critical review

3. Sugar production classified by traditional crops

4. Report on Sugarcane Plantation, Production Year 2019/20;Office of the Cane and Sugar Board

5. Electricity and Steam Production of the Sugar Cane and Sugar Industry;Office of the Cane and Sugarcane Board

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3