PTR-ToF-MS for the Online Monitoring of Alcoholic Fermentation in Wine: Assessment of VOCs Variability Associated with Different Combinations of Saccharomyces/Non-Saccharomyces as a Case-Study

Author:

Berbegal Carmen,Khomenko Iuliia,Russo Pasquale,Spano Giuseppe,Fragasso Mariagiovanna,Biasioli FrancoORCID,Capozzi VittorioORCID

Abstract

The management of the alcoholic fermentation (AF) in wine is crucial to shaping product quality. Numerous variables (e.g., grape varieties, yeast species/strains, technological parameters) can affect the performances of this fermentative bioprocess. The fact that these variables are often interdependent, with a high degree of interaction, leads to a huge ‘oenological space’ associated with AF that scientists and professionals have explored to obtain the desired quality standards in wine and to promote innovation. This challenge explains the high interest in approaches tested to monitor this bioprocess including those using volatile organic compounds (VOCs) as target molecules. Among direct injection mass spectrometry approaches, no study has proposed an untargeted online investigation of the diversity of volatiles associated with the wine headspace. This communication proposed the first application of proton-transfer reaction-mass spectrometry coupled to a time-of-flight mass analyzer (PTR-ToF-MS) to follow the progress of AF and evaluate the impact of the different variables of wine quality. As a case study, the assessment of VOC variability associated with different combinations of Saccharomyces/non-Saccharomyces was selected. The different combinations of microbial resources in wine are among the main factors susceptible to influencing the content of VOCs associated with the wine headspaces. In particular, this investigation explored the effect of multiple combinations of two Saccharomyces strains and two non-Saccharomyces strains (belonging to the species Metschnikowia pulcherrima and Torulaspora delbrueckii) on the content of VOCs in wine, inoculated both in commercial grape juice and fresh grape must. The results demonstrated the possible exploitation of non-invasive PTR-ToF-MS monitoring to explore, using VOCs as biomarkers, (i) the huge number of variables influencing AF in wine, and (ii) applications of single/mixed starter cultures in wine. Reported preliminary findings underlined the presence of different behaviors on grape juice and on must, respectively, and confirmed differences among the single yeast strains ‘volatomes’. It was one of the first studies to include the simultaneous inoculation on two non-Saccharomyces species together with a S. cerevisiae strain in terms of VOC contribution. Among the other outcomes, evidence suggests that the addition of M. pulcherrima to the coupled S. cerevisiae/T. delbrueckii can modify the global release of volatiles as a function of the characteristics of the fermented matrix.

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3