Computational insights into phthalate ester‐linked VOCs: A density functional theory (DFT)‐based approach for chemical ionization mass spectrometry (CI‐MS) analysis

Author:

Bhatia Manjeet1

Affiliation:

1. QuantumSIMM Kangra Himachal Pradesh India

Abstract

RationaleThe presence of volatile organic compounds (VOCs), notably diethyl phthalate, dimethyl phthalate, di‐n‐butyl phthalate, di(2‐ethylhexyl) phthalate, and similar compounds in soft drinks, raises significant concerns due to their known or potential adverse health effects. Monitoring these compounds is imperative to comprehend their implications on human health and the overall quality of soft drinks. Chemical ionization mass spectrometry (CI‐MS) techniques emerge as powerful tools for VOC quantification in soft drinks, offering fast analysis times, high detection sensitivity, real‐time analysis capabilities, and versatility across various scientific fields.MethodsAchieving absolute quantification of VOCs using proton transfer reaction mass spectrometry (PTR‐MS) presents challenges, with individual VOC calibration proving labor intensive. Theoretical approaches pioneered by Su and colleagues, including density functional theory (DFT), offer avenues for approximating VOC concentrations and understanding ion‐molecule reactions. Specifically, DFT method B3LYP/6–311++G(d, p) computes molecular parameters like dipole moment, polarizability, proton affinity, and ionization energy for large phthalate esters. Rate constants of ion‐molecule reactions are determined using the parametrized trajectory method under varying E/N and temperature conditions.ResultsThe analysis of computed parameters across seven complex molecules reveals notable findings. Bis(2‐methoxyethyl) phthalate, for instance, exhibits a superior dipole moment, suggesting intensified electrostatic interactions with ions and heightened rate constants. The increased proton affinity observed in certain molecules renders them suitable for specific ionization methods. Furthermore, enthalpy change and free energy computations affirm the reactivity of ions with phthalate esters, with distinct variations noted in rate constants based on dipole moment and polarizability.ConclusionsIn conclusion, the parametrized trajectory method, coupled with computational analysis of molecular parameters, offers a means to compute rate constants for ion‐molecule reactions, enabling determination of VOC concentrations in soft drinks without external calibration standards in PTR‐MS analyses. The observed variations in rate constants with temperature and reagent ions align with collision theory principles and existing literature findings, underscoring the utility of these approaches in VOC identification and quantification using PTR‐MS.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3