The Effect of Different Medium Compositions and LAB Strains on Fermentation Volatile Organic Compounds (VOCs) Analysed by Proton Transfer Reaction-Time of Flight-Mass Spectrometry (PTR-ToF-MS)

Author:

Rajendran Sarathadevi123ORCID,Khomenko Iuliia2,Silcock Patrick1ORCID,Betta Emanuela2,Pedrotti Michele2ORCID,Biasioli Franco2ORCID,Bremer Phil1ORCID

Affiliation:

1. Department of Food Science, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand

2. Sensory Quality Unit, Research and Innovation Centre, Edmund Mach Foundation, 38098 San Michele all’Adige, Italy

3. Department of Agricultural Chemistry, Faculty of Agriculture, University of Jaffna, Kilinochchi 44000, Sri Lanka

Abstract

Lactic acid bacteria (LAB) fermentation is a viable approach for producing plant-based flavour compounds; however, little is understood about the impact of different LAB strains and medium compositions on the production of volatile organic compounds (VOCs). This study investigated the impact of the addition of individual amino acids (AAs) (L-leucine, L-isoleucine, L-phenylalanine, L-glutamic acid, L-aspartic acid, L-threonine, or L-methionine) to a defined medium (DM) on the generation of VOCs (after 0, 7, and 14 days) by one of three LAB strains (Levilactobacillus brevis WLP672 (LB672), Lactiplantibacillus plantarum LP100 (LP100), and Pediococcus pentosaceus PP100 (PP100)), using proton transfer reaction-time of flight-mass spectrometry (PTR-ToF-MS). The concentration of m/z 45.031 (t.i. acetaldehyde) was significantly (p < 0.05) higher after 7 days of fermentation by LP100 in the DM supplemented with threonine compared to all other media fermented by all three strains. The concentrations of m/z 49.012 (t.i. methanethiol) and m/z 95.000 (t.i. dimethyl disulfide) were significantly (p < 0.05) higher after 7 days of fermentation by either LP100, PP100, or LB672 in the DM supplemented with methionine compared to all other media. Information on the role of individual AAs on VOCs generation by different LAB strains will help to guide flavour development from the fermentation of plant-based substrates.

Funder

Accelerating Higher Education Expansion and Development (AHEAD) operation

University of Otago doctoral scholarship

University of Otago postgraduate publishing bursary

New Zealand Ministry of Business, Innovation and Employment

European Union Next-Generation EU

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3