Development of a Taxon-Specific Real-Time PCR Method Targeting the Bacillus subtilis Group to Strengthen the Control of Genetically Modified Bacteria in Fermentation Products

Author:

Fraiture Marie-AliceORCID,Gobbo Andrea,Papazova Nina,Roosens Nancy H. C.ORCID

Abstract

Most of the bacteria that are used to produce fermentation products, such as enzymes, additives and flavorings, belong to the Bacillus subtilis group. Recently, unexpected contaminations with unauthorized genetically modified (GM) bacteria (viable cells and associated DNA) that were carrying antimicrobial resistance (AMR) genes was noticed in several microbial fermentation products that have been commercialized on the food and feed market. These contaminations consisted of GM Bacillus species belonging to the B. subtilis group. In order to screen for the potential presence of such contaminations, in this study we have developed a new real-time PCR method targeting the B. subtilis group, including B. subtilis, B. licheniformis, B. amyloliquefaciens and B. velezensis. The method’s performance was successfully assessed as specific and sensitive, complying with the Minimum Performance Requirements for Analytical Methods of GMO Testing that is used as a standard by the GMO enforcement laboratories. The method’s applicability was also tested on 25 commercial microbial fermentation products. In addition, this method was developed to be compatible with the PCR-based strategy that was recently developed for the detection of unauthorized GM bacteria. This taxon-specific method allows the strengthening of the set of screening markers that are targeting key sequences that are frequently found in GM bacteria (AMR genes and shuttle vector), reinforcing control over the food and feed chain in order to guarantee its safety and traceability.

Funder

Belgian Federal Public Service of Health, Food Chain Safety and Environment

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3