Antioxidant Capacity Changes and Untargeted Metabolite Profile of Broccoli during Lactic Acid Bacteria Fermentation

Author:

Hou Feixiang12,Cai Yanxue1,Wang Jihui12

Affiliation:

1. Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China

2. School of Bioengineering, Dalian Polytechnic University, Dalian 116034, China

Abstract

The purpose of this study was to reveal the changes in total phenolic content and antioxidant capacity of broccoli, and an untargeted metabolomics approach was developed to investigate the effect of lactic acid bacteria fermentation on the metabolome of broccoli florets. The results showed that the total phenolic content and antioxidant capacity significantly increased after fermentation. The untargeted metabolite profile showed that the main chemical components of fermented and unfermented broccoli are lipids and lipid-like molecules, organic acids and derivatives and organoheterocyclic compounds. Univariate and multivariate statistical analyses of the identified metabolites showed some metabolites such as sorbitol are upregulated after fermentation, and that other metabolites such as l-malic acid are downregulated after fermentation. Moreover, metabolite pathway analyses were used to study the identification of subtle but significant changes among groups of related metabolites that cannot be observed with conventional approaches. KEGG pathway analysis showed that metabolites are mainly enriched in the glucagon signaling pathway, pyruvate metabolism, glycolysis/gluconeogenesis and fructose and mannose metabolism after fermentation, compared with raw broccoli. The results of this study can help to further our understanding of the impact of LAB fermentation on bioactivity changes in and the metabolites profile of fermented broccoli, and the application of fermented broccoli in health foods and special dietary foods.

Funder

National Natural Science Foundation of China

Foundation for Innovation Team in Higher Education of Guangdong Province

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3