The Metabolite Profiling and Microbial Community Dynamics during Pineapple By-Product Fermentation Using Co-Inoculation of Lactic Acid Bacteria and Yeast

Author:

Luo Jiawei,Xiao Shan,Wang Jihui,Wang Bo,Cai Yanxue,Hu Wenfeng

Abstract

Value-added utilization of pineapple waste is very import for the food industry and environmental protection. In this study, whey protein (2.6%, w/w) was added to pineapple waste in order to make up for the protein deficiency of the raw material and give the final products better flavor characteristics. Autochthonous Lactococcus lactis LA5 and Hanseniaspora opuntiae SA2 were used for the co-inoculation of pineapple by-products; during fermentation, the metabolite profiling and microbial community dynamics were investigated. Results showed that the contents of organic acids, total FAAs, total phenolic compounds and flavonoids significantly increased with fermentation, and 152 kinds of peptides were identified in the final products. Relevant analyses demonstrated that dominant strains including Lactococcus lactis, Hanseniaspora and Saccharomyces not only significantly promoted the accumulation of organic acids, total phenols and other active substances, but also inhibited the growth of pathogenic bacteria and further influenced the fermentation process of pineapple waste.

Funder

Dongguan Institute of Science and Technology High Level Talent Research Start Project

Project of Educational Commission of Guangdong Province of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3