Adaptive Evolution of Industrial Brewer’s Yeast Strains towards a Snowflake Phenotype

Author:

Kayacan Yeseren,Van Mieghem Thijs,Delvaux Filip,Delvaux Freddy R.,Willaert RonnieORCID

Abstract

Flocculation or cell aggregation is a well-appreciated characteristic of industrial brewer’s strains, since it allows removal of the cells from the beer in a cost-efficient and environmentally-friendly manner. However, many industrial strains are non-flocculent and genetic interference to increase the flocculation characteristics are not appreciated by the consumers. We applied adaptive laboratory evolution (ALE) to three non-flocculent, industrial Saccharomyces cerevisiae brewer’s strains using small continuous bioreactors (ministats) to obtain an aggregative phenotype, i.e., the “snowflake” phenotype. These aggregates could increase yeast sedimentation considerably. We evaluated the performance of these evolved strains and their produced flavor during lab scale beer fermentations. The small aggregates did not result in a premature sedimentation during the fermentation and did not result in major flavor changes of the produced beer. These results show that ALE could be used to increase the sedimentation behavior of non-flocculent brewer’s strains.

Funder

European Space Agency

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3