Aroma Formation and Dynamic Changes during Sichuan Black Tea Processing by GC–MS-Based Metabolomics

Author:

Jiang Bin1,Yang Liran1,Luo Xueping1,Huang Rongyan1,Jiao Wenwen1,Zhong Xiaoxue1,Li Lixia1,Wang Qi1,Liu Mingli2,Liu Kunyi1ORCID

Affiliation:

1. School of Modern Agriculture & School of Wuliangye Technology and Food Engineering, Yibin Vocational and Technical College, Yibin 644003, China

2. Research Institute of Tea Industry of Yibin, Yibin 644100, China

Abstract

Sichuan black tea (SCBT) is well known for its pleasant sweet and citrus-like aroma. However, the origin of this distinctive aroma remains unknown. Herein, the aroma characteristics of SCBT during processing were comprehensively investigated by sensory evaluation, gas chromatography–mass spectrometry, and odor activity value (OAV). A total of 764 volatile compounds were identified and grouped into 16 categories. Notably, terpenoids, heterocyclic compounds, and esters comprised 19.35%, 16.34%, and 16.08% of total volatile compounds produced during processing, respectively. Moreover, the fermentation and second drying stages exhibited the most striking variations, with 99 and 123 volatile compounds being significantly altered. In addition, the OAV analysis led to the identification of 17 volatile compounds as key differential volatile compounds (DVCs): these included citronellol, linalool, p-cymene, (E)-linalool oxide (furanoid), etc. Among them, (3Z)-3,7-dimethylocta-1,3,6-triene and D-limonene that exhibited a grassy aroma decreased during processing, while linalool and p-cymene that had a sweet and citrus aroma increased. Thus, based on a correlation between characteristic aroma data and descriptive sensory analysis data, linalool and p-cymene were identified as the primary volatiles responsible for the sweet and citrus-like aroma. In conclusion, this study improves our understanding of the components and formation mechanism of the sweet and citrus-like aroma of SCBT.

Funder

scientific and technological projects of Sichuan Province of China

Scientific Research Project of Yibin Vocational and Technical College

Science and Technology Innovation Team Project of Yibin Vocational and Technical College

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3