Efficacy of Continuous Flow Reactors for Biological Treatment of 1,4-Dioxane Contaminated Textile Wastewater Using a Mixed Culture

Author:

Lee Kang HoonORCID,Khan Imtiaz AfzalORCID,Inam Muhammad AliORCID,Khan RizwanORCID,Wie Young MinORCID,Yeom Ick Tae

Abstract

The goal of this study was to evaluate the biodegradation of 1,4–dioxane using a mixed biological culture grown in textile wastewater sludge with 1,4–dioxane as the sole carbon source. The conditions for the long-term evaluation of 1,4–dioxane degradation were determined and optimized by batch scale analysis. Moreover, Monod’s model was used to determine the biomass decay rate and unknown parameters. The soluble chemical oxygen demand (sCOD) was used to determine the concentration of 1,4–dioxane in the batch test, and gas chromatography/mass spectrometry (GC/MS) was used to measure the concentrations via long-term wastewater analysis. Two types of reactors (continuous stirred reactor (CSTR) and plug flow reactor (PFR)) for the treatment of 1,4–dioxane from textile wastewater were operated for more than 120 days under optimized conditions. These used the mixed microbial culture grown in textile wastewater sludge and 1,4–dioxane as the sole carbon source. The results indicated efficient degradation of 1,4–dioxane by the mixed culture in the presence of a competitive inhibitor, with an increase in degradation time from 13.37 h to 55 h. A specific substrate utilization rate of 0.0096 mg 1,4–dioxane/mg MLVSS/h was observed at a hydraulic retention time of 20 h for 20 days of operation in a biomass concentration of 3000 mg/L produced by the mixed microbial culturing process. In the long-term analysis, effluent concentrations of 3 mg/L and <1 mg/L of 1,4–dioxane were observed for CSTR and PFR, respectively. The higher removal efficacy of PFR was due to the production of more MLVSS at 4000 mg/L compared to the outcome of 3000 mg/L in CSTR in a competitive environment.

Funder

Ministry of Environment

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3