Characterization of 1,4-Dioxane Biodegradation by a Microbial Community

Author:

Lee Kang HoonORCID,Wie Young MinORCID,Lee Yong-Soo

Abstract

In this study, a microbial community of bacteria was investigated for 1,4-dioxane(1,4-D) biodegradation. The enriched culture was investigated for 1,4-dioxane mineralization, co-metabolism of 1,4-dioxane and extra carbon sources, and characterized 1,4-dioxane biodegradation kinetics. The mineralization test indicates that the enriched culture was able to degrade 1,4-dioxane as the sole carbon and energy source. Interestingly, the distribution of 1,4-dioxane into the final biodegrading products were 36.9% into biomass, 58.3% completely mineralized to CO2, and about 4% escaped as VOC. The enriched culture has a high affinity with 1,4-dioxane during biodegradation. The kinetic coefficients of the Monod equation were qmax = 0.0063 mg 1,4-D/mg VSS/h, Ks = 9.42 mg/L, YT = 0.43 mg VSS/mg 1,4-dioxane and the decay rate was kd = 0.023 mg/mg/h. Tetrahydrofuran (THF) and ethylene glycol were both consumed together with 1,4-dioxane by the enriched culture; however, ethylene glycol did not show any influence on 1,4-dioxane biodegradation, while THF proved to be a competitive.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3