Sensory Assessment of Bi-Enzymatic-Treated Glucose-Galactose Syrup

Author:

Majore Kristine1,Ciprovica Inga1

Affiliation:

1. Faculty of Food Technology, Latvia University of Life Sciences and Technologies, Rigas iela 22a, LV-3004 Jelgava, Latvia

Abstract

There are a variety of ways to make glucose-galactose syrup (GGS) and other products of lactose hydrolysis; therefore, research is still ongoing and will undoubtedly result in improved methods and lower costs. The aim of the study was to use a two-stage fermentation approach to increase the sweetness of glucose-galactose syrup. Comparing lactose hydrolysis with β-galactosidases, the enzyme Ha-Lactase 5200 (K. lactis) showed the highest hydrolysis yield but NOLA™ Fit5500 (B. licheniformis) and GODO-YNL2 (K. lactis) hydrolysis yields varied. After the two-stage fermentation, the syrups from sweet whey permeate had shown the highest sweet taste intensity scores; the sweetest samples were 1NFS and 1HLS with a score of 9.2 and 9.3, respectively. The presence of fructose in the range of 14 ± 3 to 25 ± 1 %, significantly (p < 0.05) increased the sweetness of the syrups. Obtained syrups from whey permeates using enzymes NOLA™ Fit5500 and Ha-Lactase 5200 contained less than 10% lactose. Additionally, results indicate that hydrolysis of lactose and subsequent enhancement of sweetness through glucose isomerisation may provide additional benefits through the production of galacto-oligosaccharides (GOS) in the range of 2 ± 1 to 34 ± 7%.

Funder

Latvia University of Life Sciences and Technologies Transition to the New Doctoral Funding Model

European Social Fund Project

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Extraction of B-galactosidase Enzyme from Lacticacid Bacteria;IOP Conference Series: Earth and Environmental Science;2023-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3