Metabolic Engineering of Zymomonas mobilis for Acetoin Production by Carbon Redistribution and Cofactor Balance

Author:

Bao Weiwei1,Shen Wei2,Peng Qiqun1,Du Jun3,Yang Shihui1ORCID

Affiliation:

1. State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China

2. School of Life and Technology, Wuhan Polytechnic University, Wuhan 430023, China

3. China Biotech Fermentation Industry Association, Beijing 100833, China

Abstract

Biorefinery to produce value-added biochemicals offers a promising alternative to meet our sustainable energy and environmental goals. Acetoin is widely used in the food and cosmetic industries as taste and fragrance enhancer. The generally regarded as safe (GRAS) bacterium Zymomonas mobilis produces acetoin as an extracellular product under aerobic conditions. In this study, metabolic engineering strategies were applied including redistributing the carbon flux to acetoin and manipulating the NADH levels. To improve the acetoin level, a heterologous acetoin pathway was first introduced into Z. mobilis, which contained genes encoding acetolactate synthase (Als) and acetolactate decarboxylase (AldC) driven by a strong native promoter Pgap. Then a gene encoding water-forming NADH oxidase (NoxE) was introduced for NADH cofactor balance. The recombinant Z. mobilis strain containing both an artificial acetoin operon and the noxE greatly enhanced acetoin production with maximum titer reaching 8.8 g/L and the productivity of 0.34 g∙L−1∙h−1. In addition, the strategies to delete ndh gene for redox balance by native I-F CRISPR-Cas system and to redirect carbon from ethanol production to acetoin biosynthesis through a dcas12a-based CRISPRi system targeting pdc gene laid a foundation to help construct an acetoin producer in the future. This study thus provides an informative strategy and method to harness the NADH levels for biorefinery and synthetic biology studies in Z. mobilis.

Funder

National Natural Science Foundation of China

2022 Joint Projects between Chinese and CEEC‘s Universities

National Key Technology Research and Development Program of China

Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang Province

Innovation Base for Introducing Talents of Discipline of Hubei Province

State Key Laboratory of Biocatalysis and Enzyme Engineering

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3