Extracellular Production of the Taiwan-Native Norovirus P Domain Overexpressed in Pichia pastoris

Author:

Chien Man-Ling1,Yu Chun-Fu1,Huang Ching-Tsan1

Affiliation:

1. Department of Biochemical Science and Technology, National Taiwan University, Taipei 106216, Taiwan

Abstract

Many efforts in norovirus vaccine development have focused on subunit or recombinant protein vaccines, such as subviral P particles formed by the protruding (P) domain of VP1. P particles are immunogenic and have a region with a human histo-blood group antigen binding site, an interaction critical for infecting the host. In the past, only intracellular NoV P proteins expressed in Escherichia coli and Pichia pastoris were reported, and the low yield and difficulty in purification limited their applications. In this study, the Taiwan-native NoV P domain was successfully expressed and secreted by P. pastoris. The secretion efficiency was greatly enhanced by integrating oligosaccharyl transferase (Ost1) into the α-factor signal peptide and coexpressing Hac1. The production of NoV P in fermentation cultures reached 345 mg/L, and the purity and recovery were 94.8% and 66.9%, respectively, after only ion-exchange chromatography. Transmission electron microscopy analysis showed that the small P particles were mostly ring-, square-, and triangle-shaped, with diameters of 10-15 nm. The biological activity of NoV P was confirmed by saliva-binding assay using human histo-blood group antigen. This study describes the secretion and characterization of the Taiwan-native norovirus P domain in P. pastoris. Particles formed from the P domain were similar in size, morphology, and binding ability to those expressed intracellularly. The strategy described in this study provides great potential in scale-up production and antiviral vaccine development.

Funder

Ministry of Science and Technology, Taiwan, ROC

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3