High-Level Secretory Production of Recombinant E2-Spy Antigen Protein via Combined Strategy in Pichia pastoris

Author:

Li Bingkun12,Zheng Yiheng13,Zhao Shida13,Zhang Yaohan13,Li Ding14

Affiliation:

1. Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China

2. College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China

3. College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China

4. GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China

Abstract

E2-Spy (abbreviated as ES) plays a vital role as a component in the Bacterial-Like Particles (BLPs) vaccine against classical swine fever virus (CSFV). This vaccine demonstrates remarkable immunoprotection, highlighting the importance of augmenting ES production in the development of CSFV subunit vaccines. In this study, a Pichia pastoris strain capable of high-yield secretory production of ES was developed through signal peptide engineering, gene dosage optimization and co-expression of molecular chaperones. Initially, a hybrid signal peptide cSP3 was engineered, leading to a 3.38-fold increase in ES production when compared to the control strain 1-α-ES. Subsequently, cSP3 was evaluated for its expression efficiency alongside different commonly used signal peptides under multicopy conditions. SDS-PAGE analysis revealed that 2-αd14-ES exhibited the highest ES production, displaying a 4.38-fold increase in comparison to 1-α-ES. Afterwards, SSA1, YDJ1, BIP, LHS1, and their combinations were integrated into 2-αd14-ES, resulting in a 1.92-fold rise in ES production compared to 2-αd14-ES (equivalent to a 6.18-fold increase compared to 1-α-ES). The final yield of ES was evaluated as 168.3 mg/L through comparison with serially diluted BSA protein bands.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3