Genetic and Transcriptome Analyses of Callus Browning in Chaling Common Wild Rice (Oryza rufipogon Griff.)

Author:

Qiu Lingyi1ORCID,Su Jingjing1ORCID,Fu Yongcai1,Zhang Kun1ORCID

Affiliation:

1. National Center for Evaluation of Agricultural Wild Plants (Rice), Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China

Abstract

Callus browning during tissue culture of indica rice is genotype dependent, thus limiting the application of genetic transformation for editing-assisted breeding and elucidation of gene function. Here, using 124 introgression lines (HCLs) derived from a cross between the indica rice 9311 and Chaling common wild rice and 2059 SNPs for single-point and interval analysis, we identified two major QTLs, qCBT7 on chromosome 7 and qCBT10 on chromosome 10, related to callus browning, explaining 8–13% of callus browning. Moreover, we performed RNA-seq of two introgression lines with low callus browning, HCL183 and HCL232, with Oryza. rufipogon introgression fragments on chromosomes 10 and 7, respectively. Three candidate genes (Os07g0620700, Os10g0361000, and Os10g0456800) with upregulation were identified by combining interval mapping and weighted gene coexpression network analysis using the DEGs. The qRT-PCR results of the three candidate genes were consistent with those of RNA-seq. The differentiation of indica and japonica subspecies Oryza. sativa and Oryza. rufipogon suggests that these candidate genes are possibly unique in Oryza. rufipogon. GO analyses of hub genes revealed that callus browning may be mainly associated with ethylene and hormone signaling pathways. The results lay a foundation for future cloning of qCBT7 or qCBT10 and will improve genetic transformation efficiency in rice.

Funder

National Natural Science Foundation of China

Guided Project of Sanya Institute of China Agricultural University

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3