Genome-Wide Association Study of Egg Production Traits in Shuanglian Chickens Using Whole Genome Sequencing

Author:

Fu Ming12,Wu Yan12,Shen Jie12,Pan Ailuan12,Zhang Hao12,Sun Jing12,Liang Zhenhua12,Huang Tao12,Du Jinping12,Pi Jinsong12

Affiliation:

1. Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan 430064, China

2. Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Hubei Academy of Agricultural Science, Wuhan 430064, China

Abstract

Egg production is the most important economic trait in laying hens. To identify molecular markers and candidate genes associated with egg production traits, such as age at first egg (AFE), weight at first egg (WFE), egg weight (EW), egg number (EN), and maximum consecutive egg laying days (MCD), a genome-wide analysis by whole genome sequencing was performed in Shuanglian chickens. Through whole genome sequencing and quality control, a total of 11,006,178 SNPs were obtained for further analysis. Heritability estimates ranged from moderate to high for EW (0.897) and MCD (0.632), and from low to moderate (0.193~0.379) for AFE, WFE, and EN. The GWAS results showed 11 genome-wide significant SNPs and 23 suggestive significant SNPs were identified to be associated with EN, MCD, WFE, and EW. Linkage disequilibrium analysis revealed twenty-seven SNPs associated with EN were located in a 0.57 Mb region on GGA10, and clustered into five blocks. Through functional annotation, three candidate genes NEO1, ADPGK, and CYP11A1, were identified to be associated with EN, while the S1PR4, LDB2, and GRM8 genes was linked to MCD, WFE, and EW, respectively. These findings may help us to better understand the molecular mechanisms underlying egg production traits in chickens and contribute to genetic improvement of these traits.

Funder

Key Research and Development Plan Projects of Hubei Province

Hubei Academy of Agricultural Sciences Youth Science Foundation Project

Hubei Provincial Science and Technology Innovation Team Project

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3