Decomposition Analysis and Trend Prediction of Energy-Consumption CO2 Emissions in China’s Yangtze River Delta Region

Author:

Yuan Yue1,Suk Sunhee1

Affiliation:

1. Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan

Abstract

This study calculated CO2 emissions related to the consumption of primary energy by five sectors in the Yangtze River Delta region over 2000 to 2019. The Logarithmic Mean Divisia Index (LMDI) decomposition method was used to establish the factor decomposition model of CO2 emissions change. The LMDI model was modified to assess the impact of five influencing factors, namely energy structure, energy intensity, industrial structure, economic output, and population size, on CO2 emissions in the Yangtze River Delta region over the study period. The empirical results show that economic output has the largest positive effect on the growth in CO2 emissions. Population size is the second most important factor promoting the growth in CO2 emissions. Energy intensity is the most inhibitory factor to restrain CO2 emissions, with a significant negative effect. Energy structure and industrial structure contribute insignificantly to CO2 emissions. Using data on CO2 emissions in the Yangtze River Delta region from 2000 to 2019, the GM (1, 1) model was applied for future forecasts of primary energy consumption and CO2 emissions. Specific policy suggestions to mitigate CO2 emissions in Yangtze River Delta region are provided.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference40 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3