Experimental Investigation of the Effect of Heat Flux on the Fire Behavior of Engineered Wood Samples

Author:

Kasymov DenisORCID,Agafontsev Mikhail,Perminov Vladislav,Martynov PavelORCID,Reyno Vladimir,Loboda Egor

Abstract

This paper presents the experimental study results on the effect of heat flux emitted by a standard source on the charring and ignition characteristics of wood construction materials (plywood, chipboard, and oriented strand board) using infrared thermography (IRT) in the narrow spectral ranges of infrared wavelength. The time to ignition (TTI), charring rate and depth were obtained for the samples. In addition, the effect of several fire retardants on the charring rate and depth of the samples and TTI was analyzed. All fire retardants contribute to an increase in TTI, which confirms their main function—fire protection. However, the effect of fire retardants differs noticeably depending on the material. A new experimental technique is suggested, with the infrared imaging of the temperature distribution along the end of a sample under the heat flux effect on its frontal surface. The uniqueness of this approach consists in the registration of the entire process of ignition and combustion of the presented materials, which occurs in real time without contact with high spatial and temporal resolution. Using the infrared camera of the research class, it becomes possible to record the entire process from the occurrence of the temperature exposure region to the deep carbonized crater in the body of the material. The results can serve as additional recommendations in the development of fire hazard testing methods for construction materials and fire retardants.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Safety Research,Environmental Science (miscellaneous),Safety, Risk, Reliability and Quality,Building and Construction,Forestry

Reference61 articles.

1. Fireline Intensity

2. Combustion and Fire Safety of Wooden Materials

3. Fire in forestry;Chandler,1983

4. Physical and mathematical model of ignition and combustion of wood;Grishin;Tomsk State Univ. J. Math. Mech.,2010

5. Using Fire to Increase the Scale, Benefits, and Future Maintenance of Fuels Treatments

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3