Feature Extraction and Prediction of Water Quality Based on Candlestick Theory and Deep Learning Methods

Author:

Xu Rui1,Wu Wenjie1,Cai Yanpeng23,Wan Hang23,Li Jian1,Zhu Qin23,Shen Shiming1

Affiliation:

1. School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin 541004, China

2. Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China

3. Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China

Abstract

In environmental hydrodynamics, a research topic that has gained popularity is the transmission and diffusion of water pollutants. Various types of change processes in hydrological and water quality are directly related to meteorological changes. If these changing characteristics are classified effectively, this will be conducive to the application of deep learning theory in water pollution simulation. When periodically monitoring water quality, data were represented with a candlestick chart, and different classification features were displayed. The water quality data from the research area from 2012 to 2019 generated 24 classification results in line with the physics laws. Therefore, a deep learning water pollution prediction method was proposed to classify the changing process of pollution to improve the prediction accuracy of water quality, based on candlestick theory, visual geometry group, and gate recurrent unit (CT-VGG-GRU). In this method, after the periodic changes of water quality were represented by candlestick graphically, the features were extracted by the VGG network based on its advantages in graphic feature extraction. Then, this feature and other scenario parameters were fused as the input of the time series network model, and the pollutant concentration sequence at the predicted station constituted the output of the model. Finally, a hybrid model combining graphical and time series features was formed, and this model used continuous time series data from multiple stations on the Lijiang River watershed to train and validate the model. Experimental results indicated that, compared with other comparison models, such as the back propagation neural network (BPNN), support vector regression (SVR), GRU, and VGG-GRU, the proposed model had the highest prediction accuracy, especially for the prediction of extreme values. Additionally, the change trend of water pollution was closer to the real situation, which indicated that the process change information of water pollution could be fully extracted by the CT-VGG-GRU model based on candlestick theory. For the water quality indicators DO, CODMn, and NH3-N, the mean absolute errors (MAE) were 0.284, 0.113, and 0.014, the root mean square errors (RMSE) were 0.315, 0.122, and 0.016, and the symmetric mean absolute percentage errors (SMAPE) were 0.022, 0.108, and 0.127, respectively. The established CT-VGG-GRU model achieved superior computational performance. Using the proposed model, the classification information of the river pollution process could be obtained effectively and the time series information could also be retained, which made the application of the deep learning model to the transmission and diffusion process of river water pollution more explanatory. The proposed model can provide a new method for water quality prediction.

Funder

Key-Area Research and Development Program of Guangxi Natural Science Foundation

National Natural Science Foundation of China

Guangxi Key Research and Development Program

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3