A Variational Mode Decomposition Analysis and Prediction Simulation of DO in the Water Environment of the Chengdu Area, China

Author:

Li Mei12,Wang Deke3,Xu Rui3,Chen Kexing1

Affiliation:

1. School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China

2. Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Building Materials Conversion and Utilization Technology, Chengdu University, Chengdu 610106, China

3. School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin 541004, China

Abstract

DO is an important index to characterize environmental water quality. The time series fluctuation of DO can be analyzed via frequency band decomposition, which is very valuable for water quality simulations. In this paper, DO in the Chengdu area of China was studied using variational mode decomposition with daily meteorological data and water quality data from 2020 to 2022. After variable decomposition, the DO data were first decomposed into different frequency band signals named IMF1, IMF2, IMF3, IMF4, and IMF5. IMF1 represented the low-frequency signal with long-term trend characteristics of the data. IMF2 to IMF5 represented the high-frequency signal with short-term mutation characteristics of the data. By combining the variable decomposition results with the correlation analysis, it was found that the long-term trend characteristics of DO are affected by the superposition of meteorological factors, hydrological factors, and water pollution factors but have a weak correlation with any single determining factor. The air temperature, water temperature, phosphorus, air pressure, pH value, chemical oxygen demand, and nitrogen were relatively strongly correlated with the long-term trend characteristics of DO. The short-term mutation characteristics of DO were mainly determined using the characteristics of the water body itself, while the influence of the meteorological factors could basically be ignored. The water temperature, pH value, and eutrophication were the biggest influencing factors. Then, a predictive framework combining frequency division with a deep learning model or a machine learning model was constructed to predict DO. The predicted results of GRU, random forest, and XGBoost with and without the framework were compared. It was shown that, after removing the interference factors with correlations less than 0.3, the predicted value of DO was much closer to the actual value. The XGBoost and random forest models with decomposed signals had a high degree of simulation fitting and could be used to predict DO in the Chengdu area. The above research approach can be applied to further explore the prediction of various pollution factors in different areas of China.

Funder

National Natural Science Foundation

Guangxi Natural Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3