Electric Vehicle Air Conditioning System and Its Optimization for Extended Range—A Review

Author:

Jose Sherin Sam,Chidambaram Ramesh KumarORCID

Abstract

Environmental protection initiatives are speeding up the replacement of the present IC engine-based transportation system with an electric motor-driven system. In electric vehicles (EV), energy stored in batteries is used for the traction of the vehicle and the operation of the auxiliaries. The range of the electric vehicle was identified to be one of the major challenges faced by the EV segment. The optimization of the consumption of stored energy is the best solution for range improvement in an EV. Auxiliaries in the vehicle include basic accessories such as a lighting system and equipment for improved comfort such as air conditioners. Air conditioning equipment is the major power-consuming auxiliary in an EV apart from the traction motor. This review article discusses the significance and influence of different components of the air conditioning system, and methods followed by researchers to optimize the performance and reduce the energy consumption of the air conditioning system to extend the range of vehicles. The effects of thermal load and volume of space to be conditioned were also considered in this study. This review concludes by stating the different possibilities for the reduction in power consumption and emphasizes zonal air conditioning of occupant space as a solution for reducing energy consumption or increasing the range of EVs. Compared to full-space air conditioning, zonal AC can reduce power consumption by up to 51%.

Publisher

MDPI AG

Subject

Automotive Engineering

Reference145 articles.

1. Chan, C., and Chau, K. Modern Electric Vehicle Technology, 2001.

2. Roy, D., el Khoury, K., Clodic, D., and Petitjean, C. Modeling of in-Vehicle Heat Transfers Using Zonal Approach. SAE Int. J., 2001.

3. Micro-Cooling/Heating Strategy for Energy Efficient HVAC System;Kaushik;SAE Int. J. Mater. Manuf.,2022

4. Experimental investigations of solar driven ejector air conditioning system;Smierciew;Energy Build.,2014

5. Trust, C. Heating, Ventilation and Air Conditioning Overview Guide. 2020.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3