Abstract
Malware detection is in a coevolutionary arms race where the attackers and defenders are constantly seeking advantage. This arms race is asymmetric: detection is harder and more expensive than evasion. White hats must be conservative to avoid false positives when searching for malicious behaviour. We seek to redress this imbalance. Most of the time, black hats need only make incremental changes to evade them. On occasion, white hats make a disruptive move and find a new technique that forces black hats to work harder. Examples include system calls, signatures and machine learning. We present a method, called Hothouse, that combines simulation and search to accelerate the white hat’s ability to counter the black hat’s incremental moves, thereby forcing black hats to perform disruptive moves more often. To realise Hothouse, we evolve EEE, an entropy-based polymorphic packer for Windows executables. Playing the role of a black hat, EEE uses evolutionary computation to disrupt the creation of malware signatures. We enter EEE into the detection arms race with VirusTotal, the most prominent cloud service for running anti-virus tools on software. During our 6 month study, we continually improved EEE in response to VirusTotal, eventually learning a packer that produces packed malware whose evasiveness goes from an initial 51.8% median to 19.6%. We report both how well VirusTotal learns to detect EEE-packed binaries and how well VirusTotal forgets in order to reduce false positives. VirusTotal’s tools learn and forget fast, actually in about 3 days. We also show where VirusTotal focuses its detection efforts, by analysing EEE’s variants.
Funder
Engineering and Physical Sciences Research Council
Subject
General Physics and Astronomy
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A survey on run-time packers and mitigation techniques;International Journal of Information Security;2023-11-01
2. Evolving malware variants as antigens for antivirus systems;Expert Systems with Applications;2023-09
3. ObfSec: Measuring the security of obfuscations from a testing perspective;Expert Systems with Applications;2022-12
4. Black-Box Adversarial Windows Malware Generation via United Puppet-based Dropper and Genetic Algorithm;2022 IEEE 24th Int Conf on High Performance Computing & Communications; 8th Int Conf on Data Science & Systems; 20th Int Conf on Smart City; 8th Int Conf on Dependability in Sensor, Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys);2022-12
5. Measuring Machine Learning Robustness in front of Static and Dynamic Adversaries*;2022 IEEE 34th International Conference on Tools with Artificial Intelligence (ICTAI);2022-10