A semantics-based approach to malware detection

Author:

Preda Mila Dalla1,Christodorescu Mihai2,Jha Somesh2,Debray Saumya3

Affiliation:

1. University of Verona

2. University of Wisconsin, Madison

3. University of Arizona, Tucson

Abstract

Malware detection is a crucial aspect of software security. Current malware detectors work by checking for signatures , which attempt to capture the syntactic characteristics of the machine-level byte sequence of the malware. This reliance on a syntactic approach makes current detectors vulnerable to code obfuscations, increasingly used by malware writers, that alter the syntactic properties of the malware byte sequence without significantly affecting their execution behavior. This paper takes the position that the key to malware identification lies in their semantics. It proposes a semantics-based framework for reasoning about malware detectors and proving properties such as soundness and completeness of these detectors. Our approach uses a trace semantics to characterize the behavior of malware as well as that of the program being checked for infection, and uses abstract interpretation to “hide” irrelevant aspects of these behaviors. As a concrete application of our approach, we show that (1) standard signature matching detection schemes are generally sound but not complete, (2) the semantics-aware malware detector proposed by Christodorescu et al. is complete with respect to a number of common obfuscations used by malware writers and (3) the malware detection scheme proposed by Kinder et al. and based on standard model-checking techniques is sound in general and complete on some, but not all, obfuscations handled by the semantics-aware malware detector.

Funder

Division of Computer and Network Systems

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Software

Reference49 articles.

1. Lecture Notes in Computer Science;Adleman L. M.

2. Briesemeister L. Porras P. A. and Tiwari A. 2005. Model checking of worm quarantine and counter-quarantine under a group defense. Tech. rep. SRI-CSL-05-03 Computer Science Laboratory. SRI International. Briesemeister L. Porras P. A. and Tiwari A. 2005. Model checking of worm quarantine and counter-quarantine under a group defense. Tech. rep. SRI-CSL-05-03 Computer Science Laboratory. SRI International.

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3