Use of Few-Layer Graphene Synthesized under Conditions of Self-Propagating High-Temperature Synthesis for Supercapacitors Applications

Author:

Vozniakovskii Alexey1ORCID,Smirnova Evgenia2ORCID,Apraksin Rostislav2ORCID,Kidalov Sergey1ORCID,Voznyakovskii Alexander3ORCID

Affiliation:

1. Laboratory “Physics for Cluster Structures”, Ioffe Institute, 194021 Saint-Petersburg, Russia

2. Laboratory of new functional materials for chemical current sources, Ioffe Institute, 194021 Saint-Petersburg, Russia

3. Institute of Synthetic Rubber, 198035 St. Petersburg, Russia

Abstract

Graphene nanostructures (GNSs) are among the most promising materials for producing supercapacitors. However, GNSs are still not used in creating supercapacitors due to the impossibility of obtaining large volumes of high-quality material at an acceptable cost. In our previous works, we have shown the possibility of synthesizing large volumes of few-layer graphene (FLG, the number of layers is not more than five) from cyclic biopolymers under conditions of self-propagating high-temperature synthesis (SHS). Using the SHS process makes it possible to synthesize large volumes of FLG without Stone–Wales defects. This work is devoted to the study of the possibility of using FLG synthesized under the conditions of the SHS process in the creation of supercapacitors. It was found that the synthesized FLG makes it possible to obtain better results than using classical materials, namely activated carbon (AC). It was found that the sample based on FLG had a higher specific capacitance of 65 F × g−1 compared to the sample from AC, the specific capacitance of which was 35 F × g−1; for a speed of 5 mV × s−1, these values were170 and 64 F × g−1, respectively. The drop in capacitance over 1000 cycles was 4%, indicating a sufficiently high FLG stability, allowing us to consider FLG as a prospective material for use in supercapacitors.

Funder

Ioffe Institute

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3