Affiliation:
1. Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China
2. State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
Abstract
The reduced graphene oxide (rGO) exhibits outstanding electrical conductivity and a high specific surface area, making it a promising material for various applications. Fe2O3 is highly desirable due to its significant theoretical capacity and cost-effectiveness, high abundance, and environmental friendliness. However, the performance of these r-GO/Fe2O3 composite electrodes still needs to be further improved, especially in terms of cycle stability. The composite of Fe2O3 anchored on N-doped graphene with inside micro-channels (Fe2O3@N-GIMC) was used to be efficiently prepared. Because the inside channels can furnish extra transmission pathways and absorption websites and the interconnected structure can efficaciously forestall pulverization and aggregation of electrode materials. In addition, N doping is also beneficial to improve its electrochemical performance. Thus, it demonstrates exceptional sodium storage characteristics, including notable electrochemical activity, impressive initial Coulombic efficiency, and favorable rate performance. The optimized Fe2O3@N-GIMC indicates outstanding discharge capacity (573.5 mAh g−1 at 1 A g−1), significant rate performance (333.6 mAh g−1 at 8 A g−1), and stable long-term cycle durability (308.9 mAh g−1 after 1000 cycles at 1 A g−1, 200.8 mAh g−1 after 4000 cycles at 1 A g−1) as a sodium-ion battery anode. This presents a new approach for preparing graphene-based high-functional composites and lays a stable basis for further expanding its application field.
Funder
Shandong Provincial Natural Science Foundation
National Natural Science Foundation of China
Shandong Province Introduction of Top Talents (Team) “One Thing, One Discussion”