Affiliation:
1. School of Science, China University of Geosciences Beijing, No. 29 College Road, Haidian District, Beijing 100083, China
Abstract
All-inorganic perovskite quantum dots (CsPbX3 QDs) (X = Cl, Br, I) have the advantages of adjustable emission position, narrow emission spectrum, high fluorescence quantum efficiency (PLQY), easy preparation, and elevated defect tolerance; therefore, they are widely used in optoelectronic devices, such as solar cells, light-emitting diodes, and lasers. However, their stability still constrains their development due to their intrinsic crystal structure, ionic exchange of surface ligands, and exceptional sensitivity to environmental factors, such as light, water, oxygen, and heat. Therefore, in this paper, we investigate the stability improvement of CsPbX3 QDs and apply fabricated high-efficiency, stable perovskite QDs to solar cells to improve the performance of the cells further. In this paper, we focus on CsPbBr3 QDs with intrinsic extreme stability and optimize CsPbBr3 QDs using strategies, such as Mn+ doping, ligand regulation, and polymer encapsulation, which can improve optical properties while ensuring their stability. The test results show that the above five methods can improve the strength and luminescence performance of QDs, with the best stability achieved when PMMA encapsulates QDs with a ratio of PMMA = 2:1 and PLQY increases from 60.2% to 90.1%.
Funder
Key Laboratory of Land Satellite Remote Sensing Application, Ministry of Natural Resources of the People’s Republic of China
Subject
General Materials Science,General Chemical Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献