Preliminary Results of Biomass Gasification Obtained at Pilot Scale with an Innovative 100 kWth Dual Bubbling Fluidized Bed Gasifier

Author:

Di Carlo Andrea,Savuto ElisaORCID,Foscolo Pier Ugo,Papa Alessandro AntonioORCID,Tacconi Alessandra,Del Zotto LucaORCID,Aydin Bora,Bocci EnricoORCID

Abstract

Biomass gasification is a favourable process to produce a H2-rich fuel gas from biogenic waste materials. In particular, the dual bubbling fluidized bed (DBFB) technology consists of the separation of the combustion chamber, fed with air, from the gasification chamber, fed with steam, allowing to obtain a concentrated syngas stream without N2 dilution. In a previous work, an innovative design of a DBFB reactor was developed and its hydrodynamics tested in a cold model; in this work, the novel gasifier was realized at pilot scale (100 kWth) and operated for preliminary biomass gasification tests. The results showed a high-quality syngas, composed of H2 = 35%, CO = 23%, CO2 = 20%, and CH4 = 11%, as a confirmation of the design efficacy in the separation of the reaction chambers. The dry gas yield obtained was 1.33 Nm3/kg of biomass feedstock and the carbon conversion was 73%. Tars were sampled and measured both in the raw syngas, giving a content of 12 g/Nm3, and downstream from a traditional conditioning system composed of a cyclone and a water scrubber, showing a residual tar content of 3 g/Nm3, mainly toluene. The preliminary tests showed promising results; further gasification tests are foreseen to optimize the main process parameters.

Funder

Ministry of Economic Development

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference19 articles.

1. Simulation of biomass gasification in fluidized bed reactor using ASPEN PLUS

2. Biomass gasification in a circulating fluidized bed

3. Six years experience with the FICFB-gasification process;Hofbauer;Proceedings of the 12th European Conference and Technology Exhibition on Biomass for Energy, Industry and Climate Protection,2002

4. Pyrolysis of Municipal Solid Waste in Japan

5. MILENA gasification technology for high efficient SNG production from biomass;Van der Drift;Proceedings of the 14th European Conference and Technology Exhibition on Biomass for Energy, Industry and Climate Protection,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3