Cooperative Control Mechanism of Efficient Driving and Support in Deep-Buried Thick Top-Coal Roadway: A Case Study

Author:

Hu Chengjun,Han ChangliangORCID,Wang Lixin,Zhao Baofu,Yang Houqiang

Abstract

For deep-buried thick top-coal roadways under high stress, there exists great difficulty in controlling the stability of the surrounding rock as well as in the necessity for low driving speeds. Taking the return air roadway 20201 (RAR 20201) of the Dahaize Coal Mine as the background, this paper presents a typical engineering case of a deep-buried thick top-coal roadway in a western mine. Through methods such as in situ investigation, theoretical analysis, numerical simulation and engineering practice, we studied the deformation and failure mechanisms of the surrounding rock in a deep-buried high-stress thick top-coal roadway, and revealed the driving speed effect. Results show that compared with shallow buried roadways, the deep-buried thick-roof coal roadway suffers a greater range of damage and failure. The roof damage is so deep that it exceeds the action range of bolts, resulting in the stress transferring to both sides, which affects the stability of the roadway surroundings. The curve of unloading disturbance stress produced by roadway head-on driving is in accordance with the “power exponential” composite function; that is, the faster the driving speed, the less unloading disturbance intensity that is exerted on the roof strata. This paper puts forward targeted cooperative control countermeasures of efficient driving and support in a deep-buried thick top-coal roadway. On one hand, the support efficiency of a single bolt is improved so as to reduce the overall support density; on the other hand, under low support density, the driving-supporting circulation efficiency is also accelerated so as to weaken the unloading disturbance and improve roadway formation speed. Engineering practice shows great control effect of the roadway surrounding rock, and the roadway formation speed is also greatly improved. This research can provide reference for efficient driving and support design in similar deep-buried thick top-coal roadways.

Funder

the 65th batch of China Post-doctoral Science Fun

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3