Control Mechanism and Support Technology of Deep Roadway Intersection with Large Cross-Section: Case Study

Author:

Jiang Zaisheng1,Xie Shengrong12ORCID,Chen Dongdong1

Affiliation:

1. School of Energy and Mining Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China

2. Beijing Key Laboratory for Precise Mining of Intergrown Energy and Resources, China University of Mining and Technology-Beijing, Beijing 100083, China

Abstract

Conventional bolt–shotcrete support technology is usually single-layered, which does not meet the requirements of strength and stiffness for roadway support. Therefore, in this paper, new combined support technology, including a multiple-layered staggered dense arrangement of bolts, multiple-layered laying of steel meshes, multiple-layered pouring of shotcrete, strengthening support of long cables, and full cross-section grouting, is proposed. Specifically, the following new combined support technology process is proposed: first layer of shotcrete (80 mm), first layer of mesh, first layer of bolt, second layer of shotcrete (50 mm), second layer of mesh, second layer of bolt, reinforced cable, third layer of shotcrete (50 mm), and grouting. The results show the following: (1) In the system of a superimposed coupling strengthening bearing arch, compared to a cable bearing arch, changing the support parameters of the bolt bearing arch can significantly vary the bearing capacity. A range of bolt spacing between 0.4 m and 0.7 m is more conducive for a high performance of the bearing capacity of the superimposed coupling strengthening bearing arch. (2) With the increase in the single-layer shotcrete thickness (from 50 mm to 100 mm), the bearing capacity of the shotcrete structure increased rapidly in the form of a power function. (3) After the multi-level bolt–shotcrete support structure was adopted, the ring peak zone of the deviatoric stress of the surrounding rock at the roadway intersection was largely transferred to the shallow part, and the plastic zone of the surrounding rock of the roadway was reduced by 43.3~52.3% compared to that of the conventional bolt–shotcrete support. The field practice model showed that the final roof-to-floor and rib-to-rib convergences of the roadway intersection were 114 mm and 91 mm after 26 days, respectively. The rock mass above the depth of 3 m of the roadway’s roof and sides was complete, the lithology was dense, and there was no obvious crack. The new technology achieves effective control of a deep roadway intersection with a large cross-section.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3