The Online Parameter Identification Method of Permanent Magnet Synchronous Machine under Low-Speed Region Considering the Inverter Nonlinearity

Author:

Zhang Qiushi,Fan Ying

Abstract

To realize the high-performance control of a servo system, parameter accuracy is very important for the design of the controller. Thus, the online parameter identification method has been widely researched. However, the nonlinearity of the inverter will lead to an increase in resistance identification error and the fluctuation of inductance identification results. Especially in the low-speed region, the influence of the inverter is more obvious. In this paper, an offline neural network is proposed considering the parasitic capacitance to identify the nonlinearity of the inverter. Based on the Kirchhoff equation in the static state of the motor, the nonlinear voltage equation is established, and the gradient direction of the weight coefficients has been re-derived. Using the gradient descent method, the identification error can converge to zero. Moreover, the d-axis voltage equation is established considering the nonlinearity of the inverter and an online adaptive observer was proposed. Based on the Lyapunov equation, the adaptive laws are derived. Further, the decoupling of the deadtime voltage and resistance voltage is realized by using the result of neural network identification. With the proposed algorithm, nonlinear identification of the inverter characteristics is realized, and the resistance and inductance identification accuracy in the low-speed region is improved. The effectiveness of the proposed methods is verified through experimental results.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3