Affiliation:
1. School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China
Abstract
Traditional strategies for model predictive direct speed control of permanent-magnet synchronous motors are known to be vulnerable to voltage errors. In this paper, we present a novel approach that compensates for voltage errors arising from inverter nonlinearity and bus voltage uncertainties, while remaining unaffected by parameter errors. Initially, we conducted a detailed analysis to assess the impact of inverter nonlinearity and bus voltage uncertainties. Subsequently, we proposed a voltage error compensation strategy based on bus voltage identification. Using this strategy, the identified voltage error is effectively compensated within candidate voltage vectors. To validate the effectiveness of our proposed method, we conducted comprehensive experiments. The results demonstrate notable improvements compared with traditional model predictive control. Specifically, our method successfully reduces the total harmonic distortion of phase currents from 23.2% and 49.6% to 11.6% and 13.9%, respectively. Additionally, it accurately identifies voltage errors, even in the presence of parameter errors. Overall, our proposed method presents a robust and reliable solution for addressing voltage errors, thereby enhancing the performance and stability of the system.
Funder
National Natural Science Foundation of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Quantitative Assessment of Magnet Thickness Impact on PMSM Motor Performance for EVs;2023 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES);2023-12-14