A Novel Microfluidic-Based OMC-PEDOT-PSS Composite Electrochemical Sensor for Continuous Dopamine Monitoring

Author:

Nuh Sofwan,Numnuam Apon,Thavarungkul Panote,Phairatana TonghathaiORCID

Abstract

Fast and precise analysis techniques using small sample volumes are required for next-generation clinical monitoring at the patient’s bedside, so as to provide the clinician with relevant chemical data in real-time. The integration of an electrochemical sensor into a microfluidic chip allows for the achievement of real-time chemical monitoring due to the low consumption of analytes, short analysis time, low cost, and compact size. In this work, dopamine, used as a model, is an important neurotransmitter responsible for controlling various vital life functions. The aim is to develop a novel serpentine microfluidic-based electrochemical sensor, using a screen-printed electrode for continuous dopamine detection. The developed sensor employed the composite of ordered mesoporous carbon (OMC) and poly (3,4 ethylenedioxythiophene)-poly (styrene sulfonate) (PEDOT-PSS). The performance of a microfluidic, integrated with the sensor, was amperometrically evaluated using a computer-controlled microfluidic platform. The microfluidic-based dopamine sensor exhibited a sensitivity of 20.2 ± 0.6 μA μmol L−1, and a detection limit (LOD) of 21.6 ± 0.002 nmol L−1, with high selectivity. This microfluidic-based electrochemical sensor was successfully employed to determine dopamine continuously, which could overcome the problem of sensor fouling with more than 90% stability for over 24 h. This novel microfluidic sensor platform provides a powerful tool for the development of a continuous dopamine detection system for human clinical application.

Funder

Coordinating Center for Thai Government Science and Technology Scholarship Students (CSTS), National Science and Technology Development Agency

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3