In Situ Deposition of Gold Nanoparticles and L-Cysteine on Screen-Printed Carbon Electrode for Rapid Electrochemical Determination of As(III) in Water and Tea

Author:

Wang Wenjing,Yi Zhijian,Liang Qiongxin,Zhen Junjie,Wang Rui,Li Mei,Zeng Lingwen,Li Yongfang

Abstract

In this study, a screen-printed carbon electrode (SPCE) based on in situ deposition modification was developed for the sensitive, rapid, easy and convenient determination of As(III) in water and tea by linear sweep anodic stripping voltammetry (LSASV). The screen-printed carbon electrodes were placed in a solution consisting of As(III) solution, chlorauric acid and L-cysteine. Under certain electrical potential, the chloroauric acid was reduced to gold nanoparticles (AuNPs) on the SPCE. L-cysteine was self-assembled onto AuNPs and promoted the enrichment of As(III), thus enhancing the determination specificity and sensitivity of As(III). The method achieved a limit of determination (LOD) of 0.91 ppb (µg L−1), a linear range of 1~200 µg L−1, an inter-assay coefficient of variation of 5.3% and good specificity. The developed method was successfully applied to the determination of As(III) in tap water and tea samples, with a recovery rate of 93.8%~105.4%, and further validated by inductively coupled plasma mass spectrometry (ICP-MS). The developed method is rapid, convenient and accurate, holding great promise in the on-site determination of As(III) in tap water and tea leaves, and it can be extended to the detection of other samples.

Funder

Guangdong Fund Committee for Basic and Applied Basic Research

Foshan Science and Technology Innovation Team Project

Wuhan Science and Technology Planning Project

Key R&D Project of Hubei Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3