Nanoporous Gold-Modified Screen-Printed Electrodes for the Simultaneous Determination of Pb2+ and Cu2+ in Water

Author:

Li Yongfang1,Chen Xuan1,Yuan Zhiyong1,Yi Zhijian1,Wang Zijun1,Wang Rui234ORCID

Affiliation:

1. School of Food Science and Engineering, Foshan University, Foshan 528231, China

2. Human Phenome Institute, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200438, China

3. Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 200438, China

4. International Human Phenome Institutes, Shanghai 200438, China

Abstract

In this study, nanoporous gold (NPG) was deposited on a screen-printed carbon electrode (SPCE) by the dynamic hydrogen bubble template (DHBT) method to prepare an electrochemical sensor for the simultaneous determination of Pb2+ and Cu2+ by square wave anodic stripping voltammetry (SWASV). The electrodeposition potential and electrodeposition time for NPG/SPCE preparation were investigated thoroughly. Scanning electron microscopy (SEM) and energy-dispersive X-ray diffraction (EDX) analysis confirmed successful fabrication of the NPG-modified electrode. Electrochemical characterization exhibits its superior electron transfer ability compared with bare and nanogold-modified electrodes. After a comprehensive optimization, Pb2+ and Cu2+ were simultaneously determined with linear range of 1–100 μg/L for Pb2+ and 10–100 μg/L for Cu2+, respectively. The limits of detection were determined to be 0.4 μg/L and 5.4 μg/L for Pb2+ and Cu2+, respectively. This method offers a broad linear detection range, a low detection limit, and good reliability for heavy metal determination in drinking water. These results suggest that NPG/SPCE holds great promise in environmental and food applications.

Funder

start-up funds for scientific research of high-level talents in Foshan University

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3