KECA Similarity-Based Monitoring and Diagnosis of Faults in Multi-Phase Batch Processes

Author:

Qi Yongsheng,Meng Xuebin,Lu Chenxi,Gao Xuejin,Wang Lin

Abstract

Multiple phases with phase to phase transitions are important characteristics of many batch processes. The linear characteristics between phases are taken into consideration in the traditional algorithms while nonlinearities are neglected, which can lead to inaccuracy and inefficiency in monitoring. The focus of this paper is nonlinear multi-phase batch processes. A similarity metric is defined based on kernel entropy component analysis (KECA). A KECA similarity-based method is proposed for phase division and fault monitoring. First, nonlinear characteristics can be extracted in feature space via performing KECA on each preprocessed time-slice data matrix. Then phase division is achieved with the similarity variation of the extracted feature information. Then, a series of KECA models and slide-KECA models are established for steady and transitions phases respectively, which can reflect the diversity of transitional characteristics objectively and preferably deal with the stage-transition monitoring problem in multistage batch processes. Next, in order to overcome the problem that the traditional contribution plot cannot be applied to the kernel mapping space, a nonlinear contribution plot diagnosis algorithm is proposed, which is easier, more intuitive and implementable compared with the traditional one. Finally, simulations are performed on penicillin fermentation and industrial application. Specifically, the proposed method detects the abnormal agitation power and the abnormal substrate supply at 47 h and 86 h, respectively. Compared with traditional methods, it has better real-time performance and higher efficiency. Results demonstrate the ability of the proposed method to detect faults accurately and effectively in practice.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-condition incipient fault detection for chillers based on local anomaly kernel entropy component analysis;Journal of Building Engineering;2024-11

2. Research on Kernel Entropy Component Analysis Algorithm and Its Application in Chemical Process Monitoring;2024 Asia-Pacific Conference on Software Engineering, Social Network Analysis and Intelligent Computing (SSAIC);2024-01-10

3. Fault Detection of Complex Process Based on Improved Kernel Entropy Component Analysis;2021 CAA Symposium on Fault Detection, Supervision, and Safety for Technical Processes (SAFEPROCESS);2021-12-17

4. Class-information–incorporated kernel entropy component analysis with application to bearing fault diagnosis;Journal of Vibration and Control;2020-05-27

5. Remaining useful life prediction for fractional degradation processes under varying modes;The Canadian Journal of Chemical Engineering;2019-11-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3