Abstract
Two-dimensional (2D) materials with binary compounds, such as transition-metal chalcogenides, have emerged as complementary materials due to their tunable band gap and modulated electrical properties via the layer number. Ternary 2D materials are promising in nanoelectronics and optoelectronics. According to the calculation of density functional theory, in this work, we study the electronic structures of ternary 2D materials: monolayer Mo1−xCrxS2 and W1−xCrxS2. They are mainly based on monolayer molybdenum disulfide and tungsten disulfide and have tunable direct band gaps and work functions via the different mole fractions of chromium (Cr). Meanwhile, the Cr atoms deform the monolayer structures and increase their thicknesses. Induced by different mole fractions of Cr material, energy band diagrams, the projected density of states, and charge transfers are further discussed.
Funder
National Science and Technology Council (NSTC), Taiwan
Center for mm Wave Smart Radar Systems and Technologies
Subject
General Materials Science,General Chemical Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. DC/AC/RF Characteristics of Multi-Channel GAA NS FETs with ML and BL MoS2;2023 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD);2023-09-27