Author:
Lei Hua,Cui Xiaodong,Jia Xuchao,Qi Jianquan,Wang Zhu,Chen Wanping
Abstract
More and more metal oxide nanomaterials are being synthesized and investigated for degradation of organic pollutants through harvesting friction energy, yet the strategy to optimize their performance for this application has not been carefully explored up to date. In this work, three commercially available ZnO powders are selected and compared for tribocatalytic degradation of organic dyes, among which ZnO-1 and ZnO-2 are agglomerates of spherical nanoparticles around 20 nm, and ZnO-3 are particles of high crystallinity with a regular prismatic shape and smooth surfaces, ranging from 50 to 150 nm. Compared with ZnO-1 and ZnO-2, ZnO-3 exhibits a much higher tribocatalytic degradation performance, and a high degradation rate constant of 6.566 × 10−2 min−1 is achieved for RhB, which is superior compared with previous tribocatalytic reports. The stability and universality of ZnO-3 were demonstrated through cycling tests and degradation of different types of dyes. Furthermore, the mechanism of tribocatalysis revealed that h+ was the main active species in the degradation process by ZnO. This work highlights the great significance of high crystallinity rather than a large specific surface area for the development of high-performance tribocatalysts and demonstrates the great potential of tribocatalysis for water remediation.
Funder
National Natural Science Foundation of China
National Key R &D Program of China
Subject
General Materials Science,General Chemical Engineering
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献