ZnO and ZnO/Ce Powders as Tribocatalysts for Removal of Tetracycline Antibiotic

Author:

Ivanova Dobrina1,Kolev Hristo2ORCID,Stefanov Bozhidar I.3ORCID,Kaneva Nina1ORCID

Affiliation:

1. Laboratory of Nanoparticle Science and Technology, Department of General and Inorganic Chemistry, Faculty of Chemistry and Pharmacy, University of Sofia, 1164 Sofia, Bulgaria

2. Institute of Catalysis, Bulgarian Academy of Sciences, Acad. G. Bonchev St., bl. 11, 1113 Sofia, Bulgaria

3. Department of Chemistry, Faculty of Electronic Engineering and Technologies, Technical University of Sofia, 8 Kliment Ohridski Blvd, 1756 Sofia, Bulgaria

Abstract

Research on tribocatalysis, which involves the triboelectric effect, is based on the concept that friction between dissimilar materials can generate charges capable of initiating catalytic reactions. This phenomenon holds significant potential for the degradation of wastewater contaminants in the environment. In this study, pure and Ce-modified (2 mol%) ZnO powders were investigated as tribocatalysts for the degradation of doxycycline (DC), a tetracycline antibiotic, in the absence of light. The research demonstrates that friction between the catalyst, the beaker, and the polytetrafluoroethylene (PTFE) magnetic rod induces charge transfer at their interfaces, leading to the breakdown of pollutants. Additionally, doxycycline degradation was observed at three different stirring speeds (100, 300, and 500 rpm). The results confirmed the tribocatalytic effect, showing that DC degradation increases with higher stirring speeds. Using ZnO and ZnO/Ce powders, maximum degradations of 80% and 55%, respectively, were achieved in 24 h at a stirring speed of 500 rpm. The findings of this study suggest that these samples can effectively degrade contaminants in water through the application of mechanical energy.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3