Deciphering the Reactive Pathways of Competitive Reactions inside Carbon Nanotubes

Author:

Marforio Tainah DorinaORCID,Tomasini MicheleORCID,Bottoni Andrea,Zerbetto Francesco,Mattioli Edoardo JunORCID,Calvaresi MatteoORCID

Abstract

Nanoscale control of chemical reactivity, manipulation of reaction pathways, and ultimately driving the outcome of chemical reactions are quickly becoming reality. A variety of tools are concurring to establish such capability. The confinement of guest molecules inside nanoreactors, such as the hollow nanostructures of carbon nanotubes (CNTs), is a straightforward and highly fascinating approach. It mechanically hinders some molecular movements but also decreases the free energy of translation of the system with respect to that of a macroscopic solution. Here, we examined, at the quantum mechanics/molecular mechanics (QM/MM) level, the effect of confinement inside CNTs on nucleophilic substitution (SN2) and elimination (syn-E2 and anti-E2) using as a model system the reaction between ethyl chloride and chloride. Our results show that the three reaction mechanisms are kinetically and thermodynamically affected by the CNT host. The size of the nanoreactor, i.e., the CNT diameter, represents the key factor to control the energy profiles of the reactions. A careful analysis of the interactions between the CNTs and the reactive system allowed us to identify the driving force of the catalytic process. The electrostatic term controls the reaction kinetics in the SN2 and syn/anti-E2 reactions. The van der Waals interactions play an important role in the stabilization of the product of the elimination process.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3