Abstract
In recent years, the continuous development of electronic chips and the increasing integration of devices have led to extensive research on the thermal properties of ultrathin metallic materials. In particular, accurate characterization of their thermal transport properties has become a research hotspot. In this paper, we review the characterization methods of metallic nanomaterials, focusing on the principles of the transient electrothermal (TET) technique and the differential TET technique. By using the differential TET technique, the thermal conductivity, electrical conductivity, and Lorenz number of extremely confined metallic nanostructures can be characterized with high measurement accuracy. At present, we are limited by the availability of existing coating machines that determine the thickness of the metal films, but this is not due to the measurement technology itself. If a material with a smaller diameter and lower thermal conductivity is used as the substrate, much thinner nanostructures can be characterized.
Funder
National Key Research and Development Program
Natural Science Foundation of Shandong Province
National Natural Science Foundation of China
Subject
General Materials Science,General Chemical Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献