Inferring Drumhead Damping and Tuning from Sound Using Finite Difference Time Domain (FDTD) Models

Author:

Alexandraki Chrisoula1ORCID,Starakis Michael1,Zervas Panagiotis2,Bader Rolf3

Affiliation:

1. Department of Music Technology and Acoustics, Hellenic Mediterranean University, 74133 Rethymno, Greece

2. Department of Electrical and Computer Engineering, University of Peloponnese, 26334 Patras, Greece

3. Institute of Systematic Musicology, University of Hamburg, 20354 Hamburg, Germany

Abstract

Percussionists use a multitude of objects and materials, mounted on their instruments, to achieve a satisfying sound texture. This is a tedious process as there are no guidelines suggesting how to manipulate a percussion instrument to adjust its perceptual characteristics in the desired direction. To this end, the article presents a methodology for computationally identifying how to damp and tune a drumhead by adjusting its mass distribution, e.g., by applying malleable paste on its surface. A dataset of 11,114 sounds has been synthesized using a FDTD solution of the wave equation representing the vibration of a membrane, which is being transmuted through the application of paste. These sounds are investigated to derive conclusions concerning their spectral characteristics and data reduction techniques are used to investigate the feasibility of computationally inferring damping parameters for a given sound. Furthermore, these sounds are used to train a Convolutional Neural Network to infer mass distribution from sound. Results show that computational approaches can provide valuable information to percussionists striving to adjust their personal sound. Although this study has been performed with synthesized sounds, the research methodology presents some inspiring ideas for future investigations with prerecorded sounds.

Publisher

MDPI AG

Subject

Acoustics and Ultrasonics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3