Generalizable Underwater Acoustic Target Recognition Using Feature Extraction Module of Neural Network

Author:

Li Daihui,Liu Feng,Shen Tongsheng,Chen LiangORCID,Yang Xiaodan,Zhao Dexin

Abstract

The underwater acoustic target signal is affected by factors such as the underwater environment and the ship’s working conditions, causing the generalization of the recognition model is essential. This study is devoted to improving the generalization of recognition models, proposing a feature extraction module based on neural network and time-frequency analysis, and validating the feasibility of the model-based transfer learning method. A network-based filter based on one-dimensional convolution is built according to the calculation mode of the finite impulse response filter. An attention-based model is constructed using the convolution network components and full-connection components. The attention-based network utilizes convolution components to perform the Fourier transform and feeds back the optimization gradient of a specific task to the network-based filter. The network-based filter is designed to filter the observed signal for adaptive perception, and the attention-based model is constructed to extract the time-frequency features of the signal. In addition, model-based transfer learning is utilized to further improve the model’s performance. Experiments show that the model can perceive the frequency domain features of underwater acoustic targets, and the proposed method demonstrates competitive performance in various classification tasks on real data, especially those requiring high generalizability.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Self-Supervised Learning-For Underwater Acoustic Signal Classification With Mixup;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2024

2. Inferring Drumhead Damping and Tuning from Sound Using Finite Difference Time Domain (FDTD) Models;Acoustics;2023-08-23

3. Deep Learning Techniques for Detection of Underwater Acoustic Sources;2023 11th International Conference on Internet of Everything, Microwave Engineering, Communication and Networks (IEMECON);2023-02-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3