Sound Enhancement of Orthotropic Sound Radiation Plates Using Line Loads and Considering Resonance Characteristics

Author:

Nayan AhmadORCID,Kam Tai YanORCID

Abstract

A new vibro-acoustic method is presented to analyze the sound radiation behavior of orthotropic panel-form sound radiators using strip-type exciters to exert line loads to the panels for sound radiation. The simple first-order shear deformation theory together with the Ritz method is used to formulate the proposed method that makes the vibro-acoustic analysis of elastically restrained stiffened orthotropic plates more computationally efficient than the methods formulated on the basis of the other shear deformation theories. An elastically restrained orthotropic plate consisting of two parallel strip-type exciters was tested to measure the experimental sound pressure level curve for validating the effectiveness and accuracy of the proposed method. The resonance characteristics (natural frequency and mode shape) detrimental to sound radiation are identified in the vibro-acoustic analysis of the orthotropic plate. For any orthotropic sound radiation plate, based on the detrimental mode shapes, a practical procedure is presented to design the line load locations on the plate to suppress the major sound pressure level dips for enhancing the smoothness of the plate sound pressure level curve. For illustration, the sound radiation enhancement of orthotropic plates with different fiber orientations for aspect ratios equal to 3, 2, and 1 subjected to one or two line loads is conducted using the proposed procedure. The results for the cases with two line loads perpendicular to the fiber direction and located at the nodal lines of the major detrimental mode shape may find applications in designing orthotropic panel-form speakers with relatively smooth sound pressure level curves.

Funder

Ministry of Science and Technology, Taiwan, Republic of China

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3